Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(Tritylsulfanyl)ethyl 2-iodobenzoate

Xin Zhu,^a Ping Lu^a and Seik Weng Ng^{b,c}*

^aHenan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia

Correspondence e-mail: seikweng@um.edu.my

Received 18 August 2011; accepted 20 August 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.032; wR factor = 0.096; data-to-parameter ratio = 19.3.

The methine C atom of the triphenylmethyl group in the title compound, $C_{28}H_{23}IO_2S$, is slightly flattened out [ΣC_{phenvl} - $C-C_{phenvl} = 335.6 (5)^{\circ}$]. The -C-O-C-C-S chain connecting the triphenylmethyl group and the aromatic ring adopts an extended zigzag conformation, these five atoms lying on an approximate plane (r.m.s. deviation = 0.120 Å).

Related literature

For the copper(I)-catalysed cleavage of S-tritylmethyl thioethers, see: Ma et al. (2007); Zhang et al. (2009).

Experimental

Crystal data

N a

h

-	
$C_{28}H_{23}IO_2S$	$V = 4816.13 (10) \text{ Å}^3$
$M_r = 550.42$	Z = 8
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 28.4378 (4) Å	$\mu = 1.44 \text{ mm}^{-1}$
b = 9.6154 (1) Å	$T = 293 { m K}$
c = 18.3808 (2) Å	$0.30 \times 0.20 \times 0.10 \text{ mm}$
$\beta = 106.618 \ (1)^{\circ}$	

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.672, \ T_{\max} = 0.870$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.096$ S = 1.015564 reflections

15633 measured reflections 5564 independent reflections 4506 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.017$

289 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.94 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors thank Henan University of Traditional Medicine and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5302).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Ma, M., Zhang, X., Peng, L. & Wang, J. (2007). Tetrahedron Lett. 48, 1095-1097

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Zhang, Y.-Z., Zhu, X.-F., Cai, Y., Mao, H.-X. & Zhou, Q.-L. (2009). Chem. Commun. pp. 5362-5364.

supplementary materials

Acta Cryst. (2011). E67, o2475 [doi:10.1107/S1600536811034180]

2-(Tritylsulfanyl)ethyl 2-iodobenzoate

X. Zhu, P. Lu and S. W. Ng

Comment

Triphenylmethyl is an important *S*-protecting group that prevents a thiol group from reacting with sensitive functional groups. The compound $C_{28}H_{23}IO_2S$ (Scheme I) was synthesized for the purpose of examining cupper(I) chloride-catalyzed cleavage investigation (Ma *et al.*, 2007; Zhang *et al.*, 2009). The methine carbon slightly flattened out ($\Sigma C_{phenyl}-C-C_{phenyl}$ 335.6 (5) °) owing to decreased crowding by the S atom. The –C–O–C–C–S– chain connecting the triphenylmethyl group and the aromatic ring adopts an extended zigzag conformation, these five atoms lying on an approximate plane (r.m.s. deviation 0.120 Å) (Fig. 1).

Experimental

A solution of 2-iodobenzoic acid (1.24 g, 5 mmol), dicyclohexylcarbodiimide (1.65 g, 8 mmol) and 4-dimethylaminopyridine (0.98 g, 8 mmol) in THF (20 ml) was stirred for an hour. 2-(Tritylthio)ethanol (1.60 g, 5 mmol) was added. The reaction was stirred for 48 h. The compound was purified by column chromatography with petroleumether–chloroform (3:1) as the eluent. The compound was isolated upon evaporation of the solvent as yellow crystals (2.02 g, 70% yield).

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $C_{28}H_{23}IO_2S$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

2-[(triphenylmethyl)sulfanyl]ethyl 2-iodobenzoate

Crystal data	
C ₂₈ H ₂₃ IO ₂ S	F(000) = 2208
$M_r = 550.42$	$D_{\rm x} = 1.518 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, C2/c	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 6921 reflections
a = 28.4378 (4) Å	$\theta = 2.4 - 27.4^{\circ}$
<i>b</i> = 9.6154 (1) Å	$\mu = 1.44 \text{ mm}^{-1}$

<i>c</i> = 18.3808 (2) Å
$\beta = 106.618 \ (1)^{\circ}$
$V = 4816.13 (10) \text{ Å}^3$
Z = 8

Data collection

Bruker SMART APEX 5564 independent reflections diffractometer Radiation source: fine-focus sealed tube 4506 reflections with $I > 2\sigma(I)$ graphite $R_{\rm int} = 0.017$ $\theta_{\text{max}} = 27.7^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$ ω scans Absorption correction: multi-scan $h = -37 \rightarrow 33$ (SADABS; Sheldrick, 1996) $T_{\min} = 0.672, T_{\max} = 0.870$ $k = -11 \rightarrow 12$ $l = -23 \rightarrow 23$ 15633 measured reflections

T = 293 KPrism, yellow

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.096$	H-atom parameters constrained
<i>S</i> = 1.01	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0525P)^{2} + 3.6231P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
5564 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
289 parameters	$\Delta \rho_{max} = 0.94 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
I1	0.613888 (7)	0.54548 (2)	0.524788 (11)	0.06653 (9)
S1	0.42074 (2)	1.00910 (7)	0.68754 (4)	0.04999 (15)
01	0.48562 (7)	0.6866 (2)	0.62115 (13)	0.0667 (5)
O2	0.56063 (9)	0.7361 (3)	0.6179 (2)	0.1131 (11)
C1	0.34622 (8)	1.1936 (2)	0.64315 (12)	0.0395 (4)
C2	0.36875 (10)	1.2693 (3)	0.70807 (14)	0.0538 (6)
H2	0.3901	1.2249	0.7494	0.065*
C3	0.35972 (11)	1.4105 (3)	0.71197 (17)	0.0653 (7)
H3	0.3759	1.4599	0.7554	0.078*
C4	0.32767 (12)	1.4781 (3)	0.65340 (18)	0.0632 (7)
H4	0.3219	1.5727	0.6566	0.076*
C5	0.30396 (11)	1.4042 (3)	0.58932 (16)	0.0581 (6)
H5	0.2814	1.4488	0.5494	0.070*
C6	0.31346 (9)	1.2644 (3)	0.58382 (13)	0.0477 (5)

H6	0.2977	1.2165	0.5396	0.057*
C7	0.34474 (8)	0.9869 (2)	0.55660 (12)	0.0378 (4)
C8	0.31287 (9)	0.8805 (3)	0.52546 (13)	0.0477 (5)
H8	0.2971	0.8321	0.5556	0.057*
C9	0.30400 (10)	0.8445 (3)	0.44904 (14)	0.0583 (6)
Н9	0.2826	0.7721	0.4288	0.070*
C10	0.32654 (11)	0.9150 (3)	0.40389 (14)	0.0607 (7)
H10	0.3197	0.8927	0.3527	0.073*
C11	0.35946 (11)	1.0193 (3)	0.43456 (15)	0.0557 (6)
H11	0.3754	1.0662	0.4042	0.067*
C12	0.36889 (9)	1.0546 (2)	0.51009 (13)	0.0466 (5)
H12	0.3916	1.1242	0.5304	0.056*
C13	0.32141 (8)	0.9602 (2)	0.68042 (12)	0.0394 (4)
C14	0.33881 (9)	0.8611 (3)	0.73632 (13)	0.0485 (5)
H14	0.3721	0.8396	0.7514	0.058*
C15	0.30749 (11)	0.7933 (3)	0.77023 (14)	0.0563 (6)
H15	0.3199	0.7259	0.8070	0.068*
C16	0.25806 (10)	0.8250 (3)	0.74968 (14)	0.0562 (6)
H16	0.2371	0.7797	0.7724	0.067*
C17	0.24038 (10)	0.9249 (3)	0.69503 (15)	0.0532 (6)
H17	0.2072	0.9480	0.6812	0.064*
C18	0.27160 (9)	0.9912 (3)	0.66036 (13)	0.0467 (5)
H18	0.2590	1.0576	0.6231	0.056*
C19	0.35420 (8)	1.0362 (2)	0.63906 (12)	0.0385 (4)
C20	0.43229 (9)	0.8328 (3)	0.66178 (16)	0.0551 (6)
H20A	0.4385	0.7730	0.7060	0.066*
H20B	0.4037	0.7976	0.6236	0.066*
C21	0.47580 (10)	0.8317 (3)	0.63140 (17)	0.0601 (6)
H21A	0.4686	0.8811	0.5835	0.072*
H21B	0.5038	0.8752	0.6670	0.072*
C22	0.52920 (9)	0.6522 (3)	0.61484 (16)	0.0581 (6)
C23	0.53339 (9)	0.4982 (3)	0.60730 (14)	0.0515 (6)
C24	0.50377 (11)	0.4115 (4)	0.63571 (18)	0.0675 (7)
H24	0.4814	0.4507	0.6580	0.081*
C25	0.50676 (12)	0.2688 (4)	0.6317 (2)	0.0801 (9)
H25	0.4869	0.2125	0.6516	0.096*
C26	0.53938 (13)	0.2107 (4)	0.5980 (2)	0.0790 (9)
H26	0.5415	0.1145	0.5950	0.095*
C27	0.56871 (11)	0.2933 (3)	0.56890 (16)	0.0652 (7)
H27	0.5904	0.2527	0.5457	0.078*
C28	0.56646 (9)	0.4366 (3)	0.57364 (14)	0.0506 (6)
Atomic displacement	<i>it parameters</i> $(Å^2)$			

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
I1	0.05710 (13)	0.06887 (15)	0.07605 (15)	0.00487 (8)	0.02295 (9)	0.00746 (9)
S1	0.0392 (3)	0.0480 (3)	0.0585 (3)	0.0024 (2)	0.0071 (2)	0.0001 (3)
O1	0.0485 (10)	0.0558 (11)	0.0997 (14)	0.0031 (9)	0.0275 (9)	-0.0087 (11)

supplementary materials

02	0.0711 (14)	0.0704 (16)	0.215 (3)	-0.0192 (13)	0.0685 (18)	-0.0479 (19)
C1	0.0402 (10)	0.0371 (11)	0.0428 (10)	-0.0014 (9)	0.0145 (8)	-0.0039 (9)
C2	0.0558 (14)	0.0530 (15)	0.0490 (12)	0.0005 (11)	0.0094 (10)	-0.0101 (11)
C3	0.0713 (17)	0.0556 (16)	0.0688 (16)	-0.0108 (14)	0.0200 (14)	-0.0277 (14)
C4	0.0789 (19)	0.0374 (14)	0.0806 (19)	0.0029 (13)	0.0346 (16)	-0.0084 (13)
C5	0.0715 (17)	0.0439 (14)	0.0613 (14)	0.0122 (13)	0.0226 (13)	0.0062 (12)
C6	0.0531 (13)	0.0414 (13)	0.0472 (11)	0.0047 (10)	0.0122 (10)	-0.0028 (10)
C7	0.0406 (10)	0.0333 (10)	0.0404 (10)	0.0039 (8)	0.0128 (8)	-0.0014 (8)
C8	0.0500 (12)	0.0442 (13)	0.0520 (12)	-0.0025 (10)	0.0197 (10)	-0.0074 (10)
C9	0.0576 (14)	0.0584 (16)	0.0587 (14)	-0.0045 (12)	0.0161 (11)	-0.0207 (13)
C10	0.0691 (16)	0.0694 (18)	0.0443 (12)	0.0090 (14)	0.0175 (11)	-0.0094 (12)
C11	0.0704 (16)	0.0532 (15)	0.0497 (13)	0.0091 (13)	0.0269 (12)	0.0060 (11)
C12	0.0542 (13)	0.0389 (12)	0.0489 (12)	0.0010 (10)	0.0184 (10)	0.0017 (10)
C13	0.0457 (11)	0.0358 (11)	0.0376 (10)	-0.0016 (9)	0.0133 (8)	-0.0049 (8)
C14	0.0562 (13)	0.0424 (13)	0.0471 (11)	0.0038 (11)	0.0152 (10)	0.0015 (10)
C15	0.0778 (17)	0.0461 (14)	0.0486 (12)	-0.0006 (13)	0.0238 (12)	0.0049 (11)
C16	0.0701 (16)	0.0510 (15)	0.0561 (13)	-0.0126 (13)	0.0315 (12)	-0.0054 (12)
C17	0.0498 (13)	0.0575 (15)	0.0570 (13)	-0.0053 (11)	0.0228 (11)	-0.0069 (12)
C18	0.0483 (12)	0.0465 (13)	0.0456 (11)	0.0010 (10)	0.0141 (10)	0.0020 (10)
C19	0.0377 (10)	0.0362 (11)	0.0406 (10)	0.0010 (8)	0.0098 (8)	0.0012 (8)
C20	0.0473 (13)	0.0479 (14)	0.0692 (15)	0.0100 (11)	0.0154 (11)	0.0047 (12)
C21	0.0527 (14)	0.0559 (16)	0.0718 (16)	0.0020 (12)	0.0181 (12)	-0.0063 (13)
C22	0.0429 (12)	0.0636 (17)	0.0682 (15)	-0.0021 (12)	0.0164 (11)	-0.0129 (13)
C23	0.0399 (12)	0.0550 (14)	0.0537 (13)	0.0027 (11)	0.0038 (10)	-0.0012 (12)
C24	0.0514 (14)	0.0707 (19)	0.0801 (19)	0.0011 (14)	0.0182 (13)	0.0079 (16)
C25	0.0674 (19)	0.072 (2)	0.098 (2)	-0.0073 (17)	0.0195 (17)	0.0247 (19)
C26	0.083 (2)	0.0524 (18)	0.095 (2)	0.0014 (16)	0.0163 (18)	0.0085 (17)
C27	0.0673 (17)	0.0558 (17)	0.0693 (16)	0.0127 (14)	0.0146 (13)	0.0021 (14)
C28	0.0438 (12)	0.0512 (14)	0.0512 (12)	0.0043 (10)	0.0048 (10)	0.0019 (11)
Geometric pa	arameters (Å, °)					
I1—C28		2.101 (3)	C12-	-H12	0.9	300
S1-C20		1.815 (3)	C13–	C14	1.3	85 (3)
S1-C19		1.865 (2)	C13–	C18	1.3	90 (3)
O1—C22		1.319 (3)	C13–	C19	1.54	44 (3)
O1—C21		1.445 (4)	C14-	C15	1.3	87 (4)
O2—C22		1.193 (4)	C14-	-H14	0.9	300
C1—C2		1.388 (3)	C15–	C16	1.3	81 (4)
C1—C6		1.392 (3)	C15–	-H15	0.9	300
C1—C19		1.536 (3)	C16–	C17	1.3	76 (4)
C2—C3		1.387 (4)	C16–	-H16	0.93	300

C17-C18

C17—H17

C18-H18

C20-C21

C20-H20A

C20—H20B

C21—H21A

1.388 (4)

0.9300

0.9300

0.9700

0.9700

0.9700

1.496 (4)

0.9300

0.9300

0.9300

0.9300

1.360 (5)

1.375 (4)

1.381 (4)

С2—Н2

C3—C4

С3—Н3

C4—C5

C4—H4

С5—С6

С5—Н5

С6—Н6	0.9300	C21—H21B	0.9700
С7—С8	1.378 (3)	C22—C23	1.495 (4)
C7—C12	1.401 (3)	C23—C24	1.389 (4)
C7—C19	1.537 (3)	C23—C28	1.397 (4)
C8—C9	1.398 (3)	C24—C25	1.378 (5)
С8—Н8	0.9300	C24—H24	0.9300
C9—C10	1.365 (4)	C25—C26	1.373 (5)
С9—Н9	0.9300	C25—H25	0.9300
C10-C11	1.378 (4)	C26—C27	1.366 (5)
C10—H10	0.9300	С26—Н26	0.9300
C11—C12	1.379 (3)	C27—C28	1.383 (4)
C11—H11	0.9300	С27—Н27	0.9300
C20—S1—C19	103.90 (11)	C17—C16—H16	120.5
C22—O1—C21	118.3 (2)	С15—С16—Н16	120.5
C2—C1—C6	117.3 (2)	C16—C17—C18	120.5 (2)
C2—C1—C19	121.4 (2)	С16—С17—Н17	119.7
C6—C1—C19	121.23 (19)	С18—С17—Н17	119.7
C3—C2—C1	120.7 (2)	C17—C18—C13	121.1 (2)
C3—C2—H2	119.6	С17—С18—Н18	119.4
C1—C2—H2	119.6	C13—C18—H18	119.4
C4—C3—C2	121.2 (3)	C1—C19—C7	111.43 (17)
С4—С3—Н3	119.4	C1—C19—C13	108.88 (17)
С2—С3—Н3	119.4	C7—C19—C13	112.31 (17)
C3—C4—C5	119.0 (3)	C1—C19—S1	104.96 (14)
C3—C4—H4	120.5	C7—C19—S1	107.20 (14)
C5—C4—H4	120.5	C13—C19—S1	111.83 (14)
C4—C5—C6	120.5 (3)	C21—C20—S1	109.6 (2)
С4—С5—Н5	119.8	C21—C20—H20A	109.8
С6—С5—Н5	119.8	S1—C20—H20A	109.8
C5—C6—C1	121.3 (2)	С21—С20—Н20В	109.8
С5—С6—Н6	119.3	S1—C20—H20B	109.8
С1—С6—Н6	119.3	H20A—C20—H20B	108.2
C8—C7—C12	118.1 (2)	O1—C21—C20	105.5 (2)
C8—C7—C19	123.2 (2)	O1—C21—H21A	110.6
C12—C7—C19	118.7 (2)	C20—C21—H21A	110.6
С7—С8—С9	120.6 (2)	O1—C21—H21B	110.6
С7—С8—Н8	119.7	C20—C21—H21B	110.6
С9—С8—Н8	119.7	H21A—C21—H21B	108.8
C10—C9—C8	120.5 (3)	O2—C22—O1	122.4 (3)
С10—С9—Н9	119.8	O2—C22—C23	126.5 (3)
С8—С9—Н9	119.8	O1—C22—C23	111.0 (2)
C9—C10—C11	119.7 (2)	C24—C23—C28	118.0 (3)
C9—C10—H10	120.2	C24—C23—C22	119.1 (3)
C11-C10-H10	120.2	C28—C23—C22	122.9 (2)
C10-C11-C12	120.3 (2)	C25—C24—C23	121.7 (3)
C10-C11-H11	119.8	C25—C24—H24	119.2
C12—C11—H11	119.8	C23—C24—H24	119.2
C11—C12—C7	120.8 (2)	C26—C25—C24	119.3 (3)
C11—C12—H12	119.6	C26—C25—H25	120.4

supplementary materials

С7—С12—Н12	119.6	С24—С25—Н25	120.4
C14—C13—C18	117.7 (2)	C27—C26—C25	120.5 (3)
C14—C13—C19	123.5 (2)	С27—С26—Н26	119.8
C18—C13—C19	118.74 (19)	C25—C26—H26	119.8
C13—C14—C15	121.2 (2)	C26—C27—C28	120.6 (3)
C13—C14—H14	119.4	С26—С27—Н27	119.7
C15-C14-H14	119.4	С28—С27—Н27	119.7
C16-C15-C14	120.5 (2)	C27—C28—C23	120.0 (3)
C16—C15—H15	119.8	C27—C28—I1	115.0 (2)
C14—C15—H15	119.8	C23—C28—I1	125.0 (2)
C17—C16—C15	119.0 (2)		
C6—C1—C2—C3	-1.9 (4)	C12—C7—C19—C13	174.8 (2)
C19—C1—C2—C3	-177.5 (2)	C8—C7—C19—S1	119.2 (2)
C1—C2—C3—C4	1.8 (5)	C12-C7-C19-S1	-62.0(2)
C2—C3—C4—C5	0.0 (5)	C14—C13—C19—C1	-128.4 (2)
C3—C4—C5—C6	-1.6 (4)	C18—C13—C19—C1	52.3 (3)
C4—C5—C6—C1	1.5 (4)	C14—C13—C19—C7	107.7 (2)
C2—C1—C6—C5	0.3 (4)	C18—C13—C19—C7	-71.6 (3)
C19—C1—C6—C5	175.9 (2)	C14—C13—C19—S1	-12.9 (3)
C12—C7—C8—C9	-1.9 (4)	C18—C13—C19—S1	167.80 (17)
C19—C7—C8—C9	177.0 (2)	C20—S1—C19—C1	-166.42 (15)
C7—C8—C9—C10	-0.4 (4)	C20—S1—C19—C7	-47.83 (17)
C8—C9—C10—C11	2.1 (4)	C20—S1—C19—C13	75.69 (17)
C9-C10-C11-C12	-1.3 (4)	C19—S1—C20—C21	129.09 (19)
C10-C11-C12-C7	-1.0 (4)	C22-01-C21-C20	-161.8 (2)
C8—C7—C12—C11	2.6 (3)	S1—C20—C21—O1	173.37 (18)
C19—C7—C12—C11	-176.3 (2)	C21—O1—C22—O2	0.6 (5)
C18—C13—C14—C15	1.1 (3)	C21—O1—C22—C23	178.1 (2)
C19—C13—C14—C15	-178.2 (2)	O2—C22—C23—C24	153.0 (4)
C13-C14-C15-C16	-1.1 (4)	O1—C22—C23—C24	-24.4 (4)
C14—C15—C16—C17	0.1 (4)	O2—C22—C23—C28	-26.1 (5)
C15-C16-C17-C18	0.9 (4)	O1-C22-C23-C28	156.5 (2)
C16-C17-C18-C13	-0.8 (4)	C28—C23—C24—C25	0.5 (4)
C14—C13—C18—C17	-0.2 (3)	C22—C23—C24—C25	-178.7 (3)
C19-C13-C18-C17	179.2 (2)	C23—C24—C25—C26	-0.8 (5)
C2-C1-C19-C7	-156.2 (2)	C24—C25—C26—C27	0.2 (5)
C6—C1—C19—C7	28.3 (3)	C25—C26—C27—C28	0.8 (5)
C2-C1-C19-C13	79.4 (3)	C26—C27—C28—C23	-1.1 (4)
C6—C1—C19—C13	-96.1 (2)	C26—C27—C28—I1	-179.5 (2)
C2-C1-C19-S1	-40.5 (3)	C24—C23—C28—C27	0.5 (4)
C6—C1—C19—S1	144.05 (18)	C22—C23—C28—C27	179.6 (2)
C8—C7—C19—C1	-126.5 (2)	C24—C23—C28—I1	178.69 (19)
C12—C7—C19—C1	52.3 (3)	C22—C23—C28—I1	-2.2 (3)
C8—C7—C19—C13	-4.0 (3)		

Fig. 1